This vignette of package
DanielBiostatistics10th
(CRAN,
Github)
documents the examples of Chapter 3 Some Basic Probability
Concepts of Biostatistics: A Foundation for Analysis in
the Health Sciences, 11th
Edition by Wayne W. Daniel and Chad L. Cross.
Examples in this vignette require that the search
path
has
Term / Abbreviation | Description | Reference |
---|---|---|
Forward pipe operator |
?base::pipeOp introduced in R 4.1.0
|
|
CRAN , R
|
The Comprehensive R Archive Network | https://cran.r-project.org |
flextable
|
Flexible tables |
?flextable::flextable
|
matrix
|
Matrices |
?base::matrix
|
table
|
Cross tabulation |
?base::table
|
Page 69-75 (10th ed), Page 61-67 (11th ed)
c(28L, 19L, 41L, 53L, 35L, 38L, 44L, 60L) |>
matrix(ncol = 2L, dimnames = list(
FamilyHx = c('none', 'Bipolar', 'Unipolar', 'UniBipolar'),
Onset = c('Early', 'Late')
)) |>
as.table() |>
as_flextable()
FamilyHx | Onset | |||
---|---|---|---|---|
Early | Late | Total | ||
none | Count | 28 (8.8%) | 35 (11.0%) | 63 (19.8%) |
Mar. pct (1) | 19.9% ; 44.4% | 19.8% ; 55.6% | ||
Bipolar | Count | 19 (6.0%) | 38 (11.9%) | 57 (17.9%) |
Mar. pct | 13.5% ; 33.3% | 21.5% ; 66.7% | ||
Unipolar | Count | 41 (12.9%) | 44 (13.8%) | 85 (26.7%) |
Mar. pct | 29.1% ; 48.2% | 24.9% ; 51.8% | ||
UniBipolar | Count | 53 (16.7%) | 60 (18.9%) | 113 (35.5%) |
Mar. pct | 37.6% ; 46.9% | 33.9% ; 53.1% | ||
Total | Count | 141 (44.3%) | 177 (55.7%) | 318 (100.0%) |
(1) Columns and rows percentages |
Page 81 (10th ed), Page 72 (11th ed)
d351 = c(495L, 14L, 5L, 436L) |>
matrix(nrow = 2L, dimnames = list(
Alzheimer = c('No', 'Yes'),
Test = c('Negative', 'Positive')
)) |>
binTab()
d351 |>
as_flextable()
Alzheimer | Test | |||
---|---|---|---|---|
Negative (-) | Positive (+) | Total | ||
No (-) | Count | 495 (52.1%) | 5 (0.5%) | 500 (52.6%) |
Mar. pct (1) | 97.2% ; 99.0% | 1.1% ; 1.0% | ||
Yes (+) | Count | 14 (1.5%) | 436 (45.9%) | 450 (47.4%) |
Mar. pct | 2.8% ; 3.1% | 98.9% ; 96.9% | ||
Total | Count | 509 (53.6%) | 441 (46.4%) | 950 (100.0%) |
(1) Columns and rows percentages |
d351 |>
print(prevalence = .113, print_flextable = FALSE)
#> Sensitivity: 96.9% =436/450, 95% exact CI (94.8%, 98.3%)
#> Specificity: 99.0% =495/500, 95% exact CI (97.7%, 99.7%)
#>
#> Positive vs. Negative Predictive Value: 92.5% vs. 99.6%, prevalence 11.3%
#>
#> Diagnose Accuracy: 98.0% =(436+495)/950, 95% exact CI (96.9%, 98.8%)