Package 'DanielBiostatistics10th'

Title: Functions for Wayne W. Daniel's Biostatistics, Tenth Edition
Description: Functions to accompany Wayne W. Daniel's Biostatistics: A Foundation for Analysis in the Health Sciences, Tenth Edition.
Authors: Tingting Zhan [aut, cre]
Maintainer: Tingting Zhan <[email protected]>
License: GPL-2
Version: 0.2.6
Built: 2025-03-31 05:19:57 UTC
Source: https://github.com/tingtingzhan/danielbiostatistics10th

Help Index


Functions for Wayne W. Daniel's Biostatistics (Tenth Edition)

Description

Functions and examples to accompany Wayne W. Daniel's Biostatistics: A Foundation for Analysis in the Health Sciences, Tenth Edition, Wiley, ISBN: 978-1-119-62550-6.

https://www.wiley.com/en-us/Biostatistics:+A+Foundation+for+Analysis+in+the+Health+Sciences,+10th+Edition-p-9781119625506

Data sets from 10th edition https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=7849&itemId=1118302796&resourceId=30373.

Resources from 11th edition https://bcs.wiley.com/he-bcs/Books?action=index&bcsId=11491&itemId=1119496578, with errata of data.

Author(s)

Maintainer: Tingting Zhan [email protected] (ORCID)


Chapter 7: Power Curve

Description

Functions for Chapter 7, Hypothesis Testing.

Usage

power_z(
  x,
  null.value,
  sd,
  n,
  alternative = c("two.sided", "less", "greater"),
  sig.level = 0.05
)

Arguments

x

numeric vector, mean parameter(s) μ1\mu_1 in the alternative hypothesis

null.value

numeric scalar, mean parameter μ0\mu_0 in the null hypothesis

sd

numeric scalar, population standard deviation σ\sigma

n

integer scalar, sample size nn

alternative

character scalar, alternative hypothesis, either 'two.sided' (default), 'greater' or 'less'

sig.level

numeric scalar, significance level (i.e., Type-I-error rate), default .05.05

Details

Function power_z calculates the powers at each element of the alternative parameters μ1\mu_1, for one-sample zz-test

  • H0:μ=μ0H_0: \mu = \mu_0 vs. HA:μμ0H_A: \mu \neq \mu_0, if alternative = 'two.sided'

  • H0:μμ0H_0: \mu \leq \mu_0 vs. HA:μ>μ0H_A: \mu > \mu_0, if alternative = 'greater'

  • H0:μμ0H_0: \mu \geq \mu_0 vs. HA:μ<μ0H_A: \mu < \mu_0, if alternative = 'less'

Value

Function power_z() returns a 'power_z' object, which inherits from 'power.htest' class.

See Also

power.t.test